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Extremal-point densities of interface fluctuations
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We introduce and investigate the stochastic dynamics of the density of local extrema~minima and maxima!
of nonequilibrium surface fluctuations. We give a number of analytic results for interface fluctuations described
by linear Langevin equations, and for on-lattice, solid-on-solid surface-growth models. We show that, in spite
of the nonuniversal character of the quantities studied, their behavior against the variation of the microscopic
length scales can present generic features, characteristic of the macroscopic observables of the system. The
quantities investigated here provide us with tools that give an unorthodox approach to the dynamics of surface
morphologies: a statistical analysis from the short-wavelength end of the Fourier decomposition spectrum. In
addition to surface-growth applications, our results can be used to solve the asymptotic scalability problem of
massively parallel algorithms for discrete-event simulations, which are extensively used in Monte Carlo simu-
lations on parallel architectures.

PACS number~s!: 05.40.2a, 02.50.2r, 05.45.Df, 68.35.Ct
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I. INTRODUCTION AND MOTIVATION

The aim of statistical mechanics is to relate macrosco
observables to the microscopic properties of the system.
fore attempting such derivation, one always has to spe
the spectrum of length scales the analysis will compr
while ‘‘macroscopic’’ is usually defined in a unique way b
the everyday-life length scale, the ‘‘microscopic’’ is never
obvious, and the choice of the best lower-end scale is hig
nonuniversal. It is system dependent, usually left to
physical ‘‘intuition,’’ or it is set by the limitations of the
experimental instrumentation. It is obvious that in order
derive the laws of gaseous matter we do not need to em
the physics of elementary particles; it is enough to start fr
an effective microscopic model~or Hamiltonian! on the level
of molecular interactions. Then starting from the equatio
of motion on the microscopic level and using a statistical a
probabilistic approach, the macroscale physics is derived
this ‘‘long-wavelength’’ approach most of the microscop
or short-wavelength information is usually redundant, an
is scaled away.

Sometimes, however, microscopic quantities are imp
tant and directly contribute to macroscopic observables, e
the nearest-neighbor correlations in driven systems de
mine the current, in phase separation with conserved o
parameter~model B! the mobility, in kinetic Ising models the
domain-wall velocity, in parallel computation the utilizatio
~efficiency! of conservative parallel algorithms, etc. Once
lower length scale is set, on which we can define an effec
microscopic dynamics, it becomes meaningful to ask qu
tions about local propertiesat this length scale, e.g., nearest-
neighbor correlations, contour distributions, extremal-po
densities, etc. These quantities are obviously not univer
However, theirbehavioragainst the variation of the lengt
scales can present qualitative and universal features@1#. Here
we study the dynamics of macroscopically rough surfaces
investigating an intriguing miscroscopic quantity: the dens
of extrema~local minima! and its finite-size effects. We de
PRE 621063-651X/2000/62~1!/276~19!/$15.00
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rive a number of analytical results about these quantities
a large class of nonequilibrium surface fluctuations descri
by linear Langevin equations and solid-on-solid~SOS!
lattice-growth models. Besides its obvious relevance to s
face physics, our technique can be used to show@2# the
asymptotic scalability of conservative massively parallel
gorithms for discrete-event simulation, i.e., the fact that
efficiencyof such computational schemes does not van
with increasing number of processing elements. Rathe
has a nontrivial lower bound. The solution of this proble
not only is of practical importance from the point of view o
parallel computing, but has important consequences for
understanding of systems withasynchronousparallel dynam-
ics in general. There are numerous dynamical systems,
artificial and found in nature, that contain a ‘‘substant
amount’’ of parallelism, like the following examples.

~1! In wireless cellular communications the call arriva
and departures are occurring in continuous time~Poisson ar-
rivals!, and the discrete events~call arrivals! arenot synchro-
nized by a global clock. Nevertheless, calls initiated in ce
substantially far from each other can be processed simu
neously by the parallel simulatorwithout changing the Pois-
sonian nature of the underlying process. The problem of
signing efficient dynamic channel allocation schemes
wireless networks is a very difficult one, and currently it
done by modeling the network as a system of interact
continuous-time stochastic automata on parallel architect
@3#.

~2! In magnetic systems the discrete events are the s
flip attempts ~e.g., Glauber dynamics for Ising systems!.
While traditional single-spin-flip dynamics may seem inhe
ently serial, systems with short-range interactions can
simulated in parallel: spins sufficiently far from each oth
with different local simulated times can be updated simul
neously. Fast and efficient parallel Monte Carlo algorith
are extremely welcome when studying metastable decay
hysteresis of kinetic Ising ferromagnets below their critic
temperature; see@4# and references therein.
276 ©2000 The American Physical Society
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PRE 62 277EXTREMAL-POINT DENSITIES OF INTERFACE . . .
~3! Financial markets, and especially the stock market,
an extremely dynamic, high-connectivity network of rel
tions: thousands of trades are being made asynchrono
every minute@5#.

~4! The human brain, in spite of its low weight of approx
mately 1 kg and volume of 1400 cm3, contains about 100
billion neurons, each neuron being connected through s
apses to approximately 10 000 other neurons. The total n
ber of synapses in a human brain is about 1000 trill
(1015). The neurons of a single human brain, placed end
end, would make a ‘‘string’’ of an enormous length: 250 0
miles @6#. Assuming that each neuron of a single hum
cortex can be in two states only~resting or acting!, the total
number of different brain configurations would be 21011

. Ac-
cording to Carl Sagan, this number is greater than the t
number of protons and electrons of the known Universe@6#.
The brain does an incredible amount of parallel computat
it simultaneously manages all of our body functions, we c
talk and walk at the same time, etc.

~5! Evolution of networks such as the internet has as
chronous parallel dynamics: the local network connectiv
changes ‘‘concurrently’’~within a small time interval! as
many sites are attached or removed in different locations
a matter of fact, the physics of such dynamic networks
currently a heavily investigated and rapidly emerging fie
@7#.

In order to present the basic ideas and notions in the s
plest way, in the following we restrict ourselves to on
dimensional interfaces that have no overhangs. The res
tion on overhangs may actually be lifted with a prop
parametrization of the surface, a problem to which we w
return briefly in the concluding section. The first visual im
pression when one looks at a rough surfaceh(x,t) is the
extent of the fluctuations perpendicular to the substrate
other words, thewidth of the interface. The width~or the rms
of the heighth of the fluctuations! is probably the most ex
tensively studied quantity in interface physics, due to the f
that its definition is simply quantifiable and therefore me
surable:

w~L,t !5A@h~x,t !#22@h~x,t !#2, ~1!

where the overbar denotes an average over the substrate
well known that this quantity characterizes the lon
wavelength behavior of the fluctuations, the high-frequen
components being averaged out in Eq.~1!. The short-
wavelength end of the spectrum has been ignored in the
erature mainly because of its nonuniversal character,
also because it seemed to lack such a simple quantifi
definition as the widthw.

In the following we present a quantity that is almost
simple and intuitive as the widthw, but characterizes the
high-frequency components of the fluctuations. For illust
tive purposes, let us consider the classic Weierstrass func
defined as theM→` limit of the smooth functions
WM(a,b;x):

W~a,b;x!5 lim
M→`

WM~a,b;x!

5 lim
M→`

(
m50

M

a2m cos~bmx!, a,b.1. ~2!
re

sly

n-
-

n
o

n

al

:
n

-
y

s
s

-
-
ic-
r
l

in

ct
-

It is
-
y

it-
nd
le

-
on

Figure 1~a! shows the graph ofWM at a52 andb53 ~arbi-
trary values! for M50,1,2,3,4 in the intervalxP@0,4p#. As
one can see, by increasingM we are adding more and mor
detail to the graph of the function on finer and finer leng
scales. Thus,M plays the role of a regulator for the micro
scopic cutoff length which isb2M, and for M5` and b
.a, the function becomes nowhere differentiable as w
shown by Hardy@8#.

Comparing the graphs ofWM for lower M values with
those for higherM we observe that the width effectively doe
not change; however, the curves look qualitatively very d
ferent. This is obvious from Eq.~2!: adding an extra term
does not change the long-wavelength modes, but add
higher-frequency component to the Fourier spectrum of
graph. We need to operationally define a quantity that ma
a distinction between a much ‘‘fuzzier’’ graph, such as f
M54, and a smoother one, such as forM51. The natural
choice based on Fig. 1~a! is thenumber of local minima~or
extrema! in the graph of the function. In Fig. 1~b! we present
the number of local minimauM vs M for two different values
of b, b52.8 andb51.8, while keepinga at the same value
of a52. For allb values~not only for these two! the leading
behavior is exponential:uM;lM. The inset in Fig. 1~b!
shows the dependence of the ratel as a function ofb for

FIG. 1. ~a! The functionWM(a,b;x) at a52, b53, and M
50,1,2,3,4.~b! The scaling of the number of local minimauM

;lM for b52.8 ~pluses! andb51.8 ~crosses!. The inset showsl
vs b while keepinga constant,a52. The solid lines indicate the
slopes 5/3 and 1, respectively.
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fixed a. We observe that forb.a, l5b, but belowb5a the
dependence crosses over to another, seemingly linear f
tion. For b.a the amplitude of the extra added term
WM11 is large enough to prevent the cancellation of t
newly appearing minima by the drop in the local slope
WM . At b<a the number of canceled extrema starts to
crease drastically with an exponential trend, leading to
crossover seen in the inset of Fig. 1~b!. It has been shown
that the fractal dimension of the Weierstrass function fob
.a is given by D05 ln b/ln a @9,10#. For b<a the Weier-
strass curve becomes nonfractal with a dimension ofD051.
By varying b with respect toa, we are crossing a fractal
smooth transition atb5a. The very intriguing observation
we have just come across is that, even though we are in
smooth regime (b,a), the density of minima is still adi-
verging quantity @the b51.8 curve in Fig. 1~b!#. It is thus
possible to have an infinite number of ‘‘wrinkles’’ in th
Weierstrass function without having a diverging leng
without having a fractal in the classical sense. The transi
from fractal to smooth asb is lowered appears as a nonan
lyticity in the divergence rate of the curve’s wrinkledness.
rigorous analytic treatment of this problem seems to
highly nontrivial, and we propose it as an open question
the interested reader.

The simple example above shows that there is interes
and nontrivial physics lying behind the analysis of extrem
point densities, and it gives extra information on the m
phology of interfaces. Given an interfaceh(x,t), we propose
a quantitative form that characterizes the density of mini
via a ‘‘partition-function-like’’ expression, which is hardly
more complex than Eq.~1! and gives an alternate descriptio
of the surface morphology:

uq~L,@h# !5
1

L (
i

@K~xi !#
q, q.0,

xi are nondegenerate minima ofh, ~3!

with K(xi) denoting thecurvatureof h at the local~nonde-
generate! minimum point xi . The variableq can be con-
ceived as an inverse temperature. Obviously, forq50 we
obtain the number of local minima per unit interface leng
The rigorous mathematical description and definitions ly
at the basis of Eq.~3! are presented in Sec. IV. The quanti
in Eq. ~3! is reminiscent of the partition function used in th
definition of the thermodynamical formalism of on
dimensional chaotic maps@11#, and also of the definition o
the dynamical or Re´nyi entropies of these chaotic maps.
that case, however, the curvatures at the minima are repl
by cylinder intervals and/or the visiting probabilities of the
cylinders.

We present a detailed analysis of the above quantity f
large class of linear Langevin equations of type]h/]t5
2n(2¹2h)z/21h(x,t), whereh is a Gaussian noise term
andz a positive real number. These Langevin equations
found to describe faithfully the fluctuations of monatom
steps on various substrates~for a review, see Ref.@12#!. One
of the interesting conclusions we came to by studying
extremal-point densities for such equations is that, depen
on the value ofz, the typical surface morphology can b
fractal, or locally smooth, and the two regimes are separa
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by a criticalz value,zc . In the fractal case, the interface ha
infinitely many minima and cusps, just as in the case of
nondifferentiable Weierstrass function~2!, and the extremal-
point densities become infinite.~If the problem is discretized
onto a lattice with spacinga, a power-law diverging behavio
is observed for these densities asa→01.! This sudden
change of the ‘‘intrinsic roughness’’ may be conceived a
phase transition, even in an experimental situation.
changing a parameter, such as the temperature, thelaw de-
scribing the fluctuations can change since the mechan
responsible for the fluctuations can change character as
temperature varies. For example, it has been recently sh
using scanning tunneling microscope measurements@13# that
the fluctuations of single-atom-layer steps on Cu~111! below
T5300 °C correspond to the periphery diffusion mechani
(z54), but above this temperature~such asT5500 °C in
these measurements! the mechanism is attachmen
detachment, for whichz52 ~see also Refs.@14,15#!.

The paper is organized as follows. In Secs. II and III w
define and investigate the minimum-point density for seve
well-known on-lattice models, and derive exact results in
steady state (t→`), including finite-size effects. As a prac
tical application of these on-lattice results, we briefly pres
in Sec. III B a lattice surface-growth model that exactly d
scribes the evolution of the simulated time horizon for co
servative massively parallel schemes in parallel computat
solving a long-standing asymptotic scalability question
these update schemes. In Sec. IV we lay down a more ri
ous mathematical treatment for extremal-point densities,
stochastic extremal-point densities on the continuum, wit
detailed derivation for a large class of linear Langevin eq
tions ~which are in fact the continuum counterparts of t
discrete ones from Sec. II!. The more rigorous treatment a
lows for an exact analytical evaluation not only in the stea
state, but for all times. We identify characteristic expone
that separate regimes with divergent extremal-point dens
from convergent ones, and which give insight into the sho
wavelength physics behind these kinetic roughening p
cesses.

II. LINEAR SURFACE-GROWTH MODELS
ON THE LATTICE

In the present section we focus on discrete, o
dimensional models from the linear theory of kinetic roug
ening @16,17#. Let us consider a one-dimensional substr
consisting ofL lattice sites with periodic boundary cond
tions. For simplicity the lattice constant is taken as uni
which clearly represents the lower cutoff length for the
fective equation of motion. For the moment let us study
general Langevin equation on a lattice that describes the
ear theory of molecular beam epitaxy~MBE! @18,19#:

] thi~ t !5n¹2hi~ t !2k¹4hi~ t !1h i~ t !, ~4!

whereh i(t) is Gaussian white noise with

^h i~ t !h i~ t8!&52Dd i , jd~ t2t8!, ~5!

and ¹2 is the discrete Laplacian operator, i.e.,¹2f j5 f j 11
1 f j 2122 f j , applied to an arbitrary lattice functionf j . This
equation arrises in MBE with both surface diffusion~the
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PRE 62 279EXTREMAL-POINT DENSITIES OF INTERFACE . . .
fourth-order or curvature term! and desorption~the second-
order or diffusive term!, and it has been studied extensive
by several authors@18,20#. Since we will study bothk→0
andn→0 limiting cases, generic stability requiresn>0 and
k>0. Starting from a completely flat initial condition, th
interface roughens until the correlation lengthj reaches the
size of the systemj.L, when the roughening saturates a
the system enters a steady-state regime. The process o
netic roughening is controlled by the intrinsic length sc
Ak/n @20#. Below this length scale the roughening is dom
nated by the surface diffusion or Mullins@21# term ~the
fourth-order operator!, while above it is characterized by th
evaporation term~the diffusion! or Edwards-Wilkinson
~EW! @22# term. Since Eq.~4! is translationally invariant and
linear inh, it can be solved via the discrete Fourier transfo

h̃k5 (
j 50

L21

e2 ik jhi , k5
2pn

L
, n50,1,2, . . . ,L21.

~6!

Then Eq.~4! translates into

] th̃k~ t !52$2n@12cos~k!#14k@12cos~k!#2%h̃k~ t !

1h̃k~ t !, ~7!

with

^h̃k~ t !h̃k8~ t8!&52DLd (k1k8) mod 2p,0d~ t2t8!. ~8!

Following the definition of the equal-time structure fact
Sh(k,t) , namely,

Sh~k,t !Ld (k1k8) mod 2p,0[^h̃k~ t !h̃k8~ t !&, ~9!

one obtains for an initially flat interface

Sh~k,t !5Sh~k!~12e2$4n[12cos(k)] 18k[12cos(k)] 2%t!.
~10!

In the above equation,

Sh~k![ lim
t→`

Sh~k,t !5
D

2n@12cos~k!#14k@12cos~k!#2

~11!

is the steady-state structure factor.
For nÞ0, and in the asymptotic scaling limit whereL

@Ak/n, the model belongs to the EW universality class a
the roughening exponent isa51/2 ~it is defined through
the scaling L2a of the interface width ^wL

2(t)&
5(1/L)^( i 51

L @hi(t)2h̄#2& in the steady state!. The presence
of the curvature term does not change the universal sca
properties for the surface width, and one finds the same
ponents as for the pure EW case (k50) in Eq. ~4!. For n
50 the surface is purely curvature driven (z54) and the
model belongs to a different universality class where
steady-state width scales with a roughness exponent oa
53/2.

In the following we will be mostly interested in som
local steady-state properties of the surfacehi . In particular,
ki-

d

g
x-

e

we want to find the density of local minima for the surfa
described by Eq.~4!. The operator that measures this qua
tity is

u5
1

L (
i 51

L

Q~hi 212hi !Q~hi 112hi !. ~12!

This expression motivates the introduction of the local slo
f i5hi 112hi . In this representation the operator for th
density of local minima~for the original surface! is

u5
1

L (
i 51

L

Q~2f i 21!Q~f i !, ~13!

and its steady-state average is^u&5^Q(2f i 21)Q(f i)&
5^Q(2f1)Q(f2)&, due to translational invariance. The a
erage density of local minima is the same as the probab
that a randomly chosen site of the lattice corresponds t
local minimum of the surface. It is governed by the neare
neighbor two-slope distribution, which is also Gaussian a
fully determined bŷ f1

2&5^f2
2& and ^f1f2&:

Pnn~f1 ,f2!}e2f jAjk
nnfk /2, j ,k51,2, ~14!

where

Ann5S ^f1
2& ^f1f2&

^f1f2& ^f1
2&

D 21

. ~15!

As we show in Appendix A, the density of local minim
depends only on the ratiôf1f2&/^f1

2&:

^u&5
1

2p
arccosS ^f1f2&

^f1
2&

D . ~16!

Finite-size effects in̂u& are obviously carried through from
the correlations. First we find the steady-state structure fa
for the slopes. Sincef̃k5(12e2 ik)h̃k , we have Sf(k)
52@12cos(k)#Sh(k). Then from Eq.~11! one obtains

Sf~k!5
D

n12k@12cos~k!#
for kÞ0

and

Sf~k!50 for k50. ~17!

The latter automatically follows from the( i 51
L f i50 rela-

tion. Then we obtain the slope-slope correlations

CL
f~ l ![^f if i 1 l&5

1

L (
n51

L21

ei (2pn/L) lSfS 2pn

L D . ~18!

With the help of Poisson summation formulas, in Append
B we show a derivation for the exact spatial correlation fun
tion, which yields
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CL
f~ l !5

D

n12k S bu l u

A12a2
2

1

12a

1

L

1
bL

12bL

bl1b2 l

A12a2D , u l u<L, ~19!

with

a[
2k

n12k
and b[

12A12a2

a
. ~20!

We haveuau<1 andb<1. The second term in the parenth
ses in Eq.~19! gives auniform power-law correction, while
the third one gives an exponential correction to the corre
tion function in the thermodynamic limit. FornÞ0 andL
→` one obtains

C`
f~ l !5

D

n12k

bu l u

A12a2
5

D

n12k

e2u l u/j`
f

A12a2
, ~21!

where we define the correlation length of the slopes for
infinite system as

j`
f[2

1

ln~b!
. ~22!

In the n→0 limit it becomes the intrinsic correlation length
which diverges asn21/2:

j`
f .

n→0

Ak/n

and

C`
f~ l ! .

n→0 D

2k SAk

n
2u l u D .

D

2k
~j`

f2u l u!. ~23!

In this limit the slopes~separated by any finite distance! be-
come highly correlated, and one may start to anticipate
the density of local minima will vanish for the original su
face$hi%. In the following two subsections we investigate t
density of local minima and its finite-size effects for th
Edwards-Wilkinson and Mullins cases.

A. Density of local minima for the Edwards-Wilkinson regime

To study the finite-size effects for the local minimum de
sity, we neglect the exponentially small correction in E
~19!, so in theasymptoticlimit, whereL@j`

f , CL
f( l ) decays

exponentially withuniform finite-size corrections:

CL
f~ l !.

D

n12k S bu l u

A12a2
2

1

12a

1

L D . ~24!

This holds for the special casek50 as well~in fact, there the
exponential correction exactly vanishes!, leaving

CL
f~ l !5

D

n S d l ,02
1

L D . ~25!
-

n

at

-
.

Now, employing Eq.~16!, we can obtain the density o
minima as

^u&L5
1

2p
arccosS CL

f~1!

CL
f~0!

D
.

1

2p
arccos~b!1

1

2p
A12b

11b
A11a

12a

1

L
, ~26!

Again, for thek50 case one has a compact exact express
and the corresponding large-L behavior:

^u&L5
1

2p
arccosS 2

1

L21D.
1

4
1

1

2p

1

L
, ~27!

which can also be obtained by taking thek→0 limit in Eq.
~26!. To summarize, as long asnÞ0, the model belongs to
the EW universality class, and in the steady state, the den
of local minima behaves as

^u&L.^u&`1
const

L
, ~28!

where^u&` is the value of the density of local minima in th
thermodynamic limit:

^u&`5
1

2p
arccos~b!. ~29!

Note that this quantity can be small, but does not vanishn
is close but not equal to 0. Further, the system exhibits
scaling~28! for asymptotically large systems, whereL@j`

f .
It is important to see in detail hoŵu&` behaves asn→0:

^u&` .
n→0 1

2p arccos~12A2A12a!

.
1

2p arccosS 12An
k D

.
1

2p S 2An
k D 1/2

.
A2
2p

1

Aj`
f

. ~30!

Thus, the density of local minima for aninfinite system van-
ishes as we approach the purely curvature-driven (n→0)
limit. Simply speaking, the local slopes become ‘‘infinitely
correlated, such thatC`

f( l ) diverges@according to Eq.~23!#,
and the ratioC`

f( l )/C`
f(0) for any fixedl tends to 1. This is

the physical picture behind the vanishing density of lo
minima.

B. Density of local minima for the Mullins regime

Here we take then→0 limit first and then study the
finite-size effects in the purely curvature-driven model. T
slope correlations are finite for finiteL, as can be seen from
Eq. ~18!, since then50 term is not included in the sum
Thus, in the exact closed formula~19! a careful limiting
procedure has to be taken, which indeed yields the inte
cancellation of the apparently divergent terms. Then one
tains the exact slope correlations for then50 case,
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CL
f~ l !5

D

2k FL

6 S 12
1

L2D 2u l uS 12
u l u
L D G , ~31!

and for the local minimum density,

^u&L5
1

2p
arccosS 12

6

L11D.
A3

p

1

AL
. ~32!

It vanishes in the thermodynamic limit, and hence one
serves that the limitsn→0 andL→` are interchangeable
For n50, L is directly associated with the correlation leng
and we can definejL

f[L/6. Then the correlations and th
density of local minima take the same scaling form as E
~23! and ~30!:

CL
f~ l !.

D

2k
~jL

f2u l u! ~33!

and

^u&L.
A2

2p

1

AjL
f

. ~34!

C. Scaling considerations for higher-order equations

Let us now consider another equation with a generali
relaxational term that includes the Edwards-Wilkinson a
the noisy Mullins equation as particular cases:

] thi~ t !52n~2¹2!z/2hi~ t !1h i~ t ! ~35!

wherez is a positive real number~not necessarily integer!.
Otherz values of experimental interest arez51 ~relaxation
through plastic flow@17,21#! and z53 ~terrace-diffusion
mechanism@12,14,15#!. For early times, such thatt!Lz, the
interface width^wL

2(t)& increases with time as

^wL
2~ t !&;t2b, ~36!

where b5(z21)/2z @16,17#. In the t→` limit, where t
@Lz, the interface width saturates for a finite system,
diverges withL according to^wL

2(`)&;L2a where a5(z
21)/2 is the roughness exponent@16,17#.

For z54 ~curvature-driven interface! we saw that the
slope fluctuation behaves asCL

f(0)5^f i
2&;L. For higherz

the slope-slope correlation function can be obtained as

CL
f~ l !5

D

L (
n51

L21
ei (2pn/L) l

n$2@12cos~2pn/L !#%(z22)/2
. ~37!

It is divergent in theL→` limit, as a result of infinitely
small wave vectors;2p/L, and we can see that

CL
f~0!;Lz23. ~38!

It is also useful to define the slope-difference correlat
function

GL
f~ l ![^~f i 1 l2f i !

2&, ~39!

for which one can write
-

s.

d
d

t

n

GL
f~ l !5

D

L (
n51

L21
2$12cos@~2pn/L !l #%

n$2@12cos~2pn/L !#%(z22)/2
. ~40!

For small wave vectors we can again deduce that forz.5

GL
f~ l !;Lz25l 2. ~41!

One may refer to this form as ‘‘anomalous’’ scaling@17# for
the slope-difference correlation function in the followin
sense. Forz,5 the scaling form forGL

f( l ) follows that of
CL

f(0) @Eq. ~38!#, i.e., GL
f( l ); l z23. For z.5 @Eq. ~41!# it

obviously features a differentl dependence and an addition
power ofL, and it diverges in theL→` limit.

Having these scaling functions for largeL, we can easily
obtain the scaling behavior for the average density of lo
minima. Exploiting the identity

CL
f~ l !5CL

f~0!2
1

2
GL

f~ l !, ~42!

we use the general form for the local minimum density:

^u&5
1

2p
arccosS CL

f~1!

CL
f~0!

D
5

1

2p
arccosS 12

1

2

GL
f~1!

CL
f~0!

D
.

1

2p
arccosS 12

const

L2 D ;
1

L
. ~43!

Note that this is the scaling behavior forall z.5. It simply
shows the trivial lower bound for̂u&: since there is always
at least one minimum~and one maximum! among theL sites,
it can never be smaller than 1/L.

D. The average curvature at local minima

The next natural question to ask is how the average c
vatureK at the minimum points scales with the system s
for the general system described by Eq.~35!. This can be
evaluated as the conditional average of the local curvatur
the local minima:

^K&min5^~f i2f i 21!&min

5
^~f i2f i 21!Q~2f i 21!Q~f i !&

^Q~2f i 21!Q~f i !&

5
^~f22f1!Q~2f1!Q~f2!&

^u&
, ~44!

where translational invariance is exploited again. The
merator in Eq.~44! can be obtained after performing th
same basis transformation~Appendix A! that was essential to
find ^u&. Then, after elementary integrations, we find
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^K&min5
1

^u&

1

A2p

CL
f~0!2CL

f~1!

ACL
f~0!

5
A2p

ACL
f~0!

CL
f~0!2CL

f~1!

arccos@CL
f~1!/CL

f~0!#
. ~45!

Using the explicit results for the slope correlation functi
for z52 andz54 and its scaling forms for higherz given in
the previous subsections, one can easily deduce the fol
ing. For z,5 the average curvature at the local minimu
pointson a latticetends to aconstantin the thermodynamic
limit. For z52

^K&min.
2A2

Ap
AD

n
1OS 1

L D , ~46!

and forz54

^K&min.ApAD

2n
1OS 1

L D . ~47!

The behavior of this quantity drastically changes forz.5,
where itdivergeswith the system size as

^K&min;L (z25)/2. ~48!

.

III. OTHER LATTICE MODELS AND AN APPLICATION
TO PARALLEL COMPUTING

A. The single-step model

In the single-step model the height differences~i.e., the
local slopes! are restricted to61, and the evolution consist
of particles of height 2 being deposited at the local minim
While the full dynamic behavior of the model belongs to t
Kardar-Parisi-Zhang~KPZ! universality class@23#, in one
dimension the steady state is governed by the EW Ha
tonian@24#. Thus, the roughness exponent isa51/2, and we
expect the finite-size effects for^u& to follow Eq. ~28!. The
advantage of this model is that it can be mapped ont
driven hard-core lattice gas for which thesteady-stateprob-
ability distribution of the configurations is known exact
@24,25# ~each configuration has equal weight!. This enables
us to find arbitrary moments of the local minimum dens
operator. Sincef i561, it can be simply written as

u5
1

L (
i 51

L
12f i 21

2

11f i

2
5

1

L (
i 51

L

~12ni 21!ni , ~49!

whereni5(11f i)/2 corresponds to the hard-core lattice-g
occupation number. The constraint( i 51

L f i50 translates to
( i 51

L ni5L/2. Note that herêu&5^(12ni 21)ni& is propor-
tional to the average current. Knowing the exact steady-s
probability distribution@24,25#, one can easily find that

^ni&5
1

2
, ^ninj& iÞ j5

1

4

L22

L21
. ~50!
w-

.

il-

a

s

te

Thus, the exact finite-size effect for the local minimum de
sity ~which is also the average growth rate of the surface@1#!
is

^u&L5
1

4

L

L21
5

1

4
1

1

4L
1O~L22!, ~51!

in agreement with the general scaling behavior of^u&L in the
EW universality class@Eq. ~28!#.

B. The massively parallel exponential update model

One of the most challenging problems in parallel comp
ing @26# is the efficient implementation of dynamic Mont
Carlo ~MC! algorithms for discrete-event simulations o
massively parallel architectures. As already mentioned in
Introduction, it has numerous practical applications rang
from magnetic systems~the discrete events are spin-flip a
tempts! to queueing networks~the discrete events are jo
arrivals!. A parallel architecture by definition contains~usu-
ally! a large number of processors, or processing elem
~PEs!. During the simulation each processor has to tac
only a fraction of the full computing task~e.g., a specific
block of spins!, and the algorithm has to ensure through sy
chronization that the underlying dynamics is not altered. I
wide range of models the discrete events are Poisson arri
Since this stochastic process is reproductive~the sum of two
Poisson processes is also a Poisson process with a diffe
arrival frequency!, the Poisson streams can be simulated
multaneously on the subsystems carried by each PE. A
consequence, the simulated time islocal andrandom, incre-
mented by exponentially distributed random variables
each PE. However, the algorithm has to ensure that caus
across the boundaries of the neighboring blocks is not v
lated. This requires a comparison between the neighbo
simulated times, and waiting, if necessary~conservative ap-
proach!. In the simplest scenario~one site per PE!, this
means that the only PEs allowed to attempt to update
state of the underlying site and increment their local time
those for which the local simulated time is alocal minimum
of the full simulated time horizon of the system$t i%, i
51, . . . ,L. Here, we consider a chainlike connectivi
among the PEs but connectivities of higher degree can
treated as well. Also note that the ‘‘mean-field-like
K-random interaction model~each site compares its loca
simulated time toK randomly chosen other sites! has been
investigated by Greenberget al. @28#.

One can think of the time horizon as a fluctuating surfa
with height variablet i . Other examples where the upda
attempts are independent Poisson arrivals include arriv
calls in the wireless cellular network of a large metropolit
area@3#, or the spin-flip attempts in an Ising ferromagne
This extremely robust parallel scheme was introduced
Lubachevsky@27#, and it is applicable to a wide range o
stochastic cellular automata with local dynamics where
discrete events are Poisson arrivals. The local random t
increments are, in the language of the associated surf
equivalent to depositing random amounts of ‘‘materia
~with an exponential distribution! at the local minima of the
surface~Fig. 2!. This defines a simple surface-growth mod
which we shall refer to as the massively parallel exponen
update~MPEU! model. The main concern about a paral
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implementation is its efficiency. Since in the next time st
only a fraction of PEs will attempt the update, i.e., those t
are in the local minima of the time horizon, while the re
idle, the efficiency is simply the average number of no
idling PEs divided by the total number of PEs (L). This is
equivalent to theaverage number of minima per unit lengt,
or the minimum-point densityu. The fundamental questio
of scalabilityarises: will the efficiency of the algorithm go t
zero as the number of PEs is increased indefinitely (L→`),
or not? If the efficiency has a nonzero lower bound forL
→`, the algorithm is calledscalable, and certainly this is the
preferred type of scheme. Can one in principle design s
efficient algorithms?

As mentioned in the Introduction, we know of one e
ample that nature provides with an efficient algorithm fo
very large number of processing elements: the human b
with its 1011 PEs is the largest parallel computer ever bu
Although intuition suggests that indeed there are scala
parallel schemes, it has been proved only recently~see Ref.
@2# for details!, by using the aforementioned analogy wi
the simple MPEU surface-growth model. While the MPE
model exactly mimics the evolution of the simulated tim
horizon, it can also be considered as a primitive model
ion sputtering of surfaces~etching dynamics!: to see this,
define a new height variable viahi[2t i , i.e., flip Fig. 2
upside down. This means that, instead of depositing mate
we have to take ‘‘etch,’’ and this has to be done at the lo
maximaof the $hi% surface. In sputtering of surfaces by io
bombardement an incoming ion projectile will most like
break off a piece from thetop of a mound instead of from a
valley, very similar to our ‘‘reversed’’ MPEU model. It ha
been shown that the sputtering process is described by
KPZ equation@16,29#. This qualitative argument is in com
plete agreement with the extensive MC simulations a
coarse-grained approximation of Ref.@2#. The MPEU model
is similar to the single-step model in that it also belongs
the KPZ dynamic universality class. In one dimension
macroscopic landscape is governed by the EW Hamilton

The slope variablesf i for MPEU are not independent i
the L→` limit, but short-range correlated. This alread
guarantees that the steady-state behavior is governed b
EW Hamiltonian, and thus that the density of local minim
does not vanish in the thermodynamic limit. Our results c

FIG. 2. The MPEU model. The arrows show the local minim
where random amounts of material will be deposited in the n
time step.
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firm that the finite-size effects for̂u& follow Eq. ~28!:

^u&L.^u&`1
const

L
~52!

with ^u&`50.246 41(7)~see Fig. 3!.
We concluded@2# that the basic algorithm~one site per

PE! is scalable for one-dimensional arrays. The same co
spondence can be applied to model the performance of
algorithm for higher-dimensional logical PE topologie
While this will involve the typical difficulties of surface
growth modeling, such as an absence of exact results
very long simulation times, it establishes potentially fruitf
connections between two traditionally separate research
eas.

C. The larger curvature model

In this subsection we briefly present a curvature-driv
SOS surface deposition model known in the literature as
larger curvature model, and show a numerical analysis of
density of minima in this model. This model was original
introduced by Kim and Das Sarma@30# and Krug@31# inde-
pendently, as an atomistic deposition model that fully co
forms to the behavior of the continuum fourth-order line
Mullins equation@n50, k.0 in Eq. ~4!#. Note that the dis-
crete analysis we presented in Sec. II is based on the disc
zation of the continuum equation using the simplest forw
Euler differencing scheme. The larger curvature model, ho
ever, is agrowthmodel where the freshly deposited particl
diffuse on the surface according to the rules of the mo
until they are embedded. Since in all the quantities studied
far the correspondence~on the level of scaling! between the
larger curvature model and the Langevin equation is v
good, we would expect the dynamic scaling properties of
density of minima for both the model and the equation to
identical.

The larger curvature model has rather simple rules
freshly deposited atom~let us say at sitei ) will be incorpo-
rated at the nearest-neighbor site that has largest curva
~i.e., Ki5hi 111hi 2122hi is maximum!. If there are more
neighbors with the same maximum curvature, then one

,
t

FIG. 3. Density of minima vs 1/L for the MPEU model.
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chosen randomly. If the original site~i! is among those with
maximum curvature, then the atom is incorporated ati.

Figure 4 shows the scaling of the density of minima^u&L

in the steady state vs 1/AL. According to Eq.~32!, for the
fourth-order equation on the lattice, the behavior of the d
sity of minima in the steady state scales with system size
1/AL. And, indeed, Fig. 4 shows the same behavior for
larger curvature model, as expected. Note that this beha
has already set in at rather small system sizes, abouL
5100, meaning that the finite-system-size effects are ra
small for the larger curvature model. This is a very fortun
property since increasing the system size means decrea
the density of minima, and therefore relative statistical err
will increase.

This can be improved only by better statistics, whic
however, quickly becomes a daunting task, since the cr
over time toward the steady state scales with system siz
L4. As we shall see in Sec. V A, a mathematically rigoro
approach to the continuum equation yields the same 1AL
behavior. Since the density of minima does decay to zero
algorithm corresponding to the larger curvature model~or
the Mullins equation! would not be asymptotically scalable

Finally, we would like to make a brief note about th
observed morphologies in the steady state for the Mul
equation, or the related models. It has been shown previo
@32# that in the steady state the morphology typically sho
a single large mound~or macroscopic groove!. At first sight
this may appear as a surprise, since we have shown tha
number of minima~or maxima! diverges asAL ~the density
vanishes as 1/AL). There is, however, no contradiction, b
cause that refers to a a mound that expands throughout t
system, i.e., it is a long-wavelength structure, whereas
number of minima measuresall the minima, and thus it is a
short-wavelength characteristic. In the steady state we ind
have a single large, macroscopic groove; however, there
numerous small dips and humps generated by the con
coupling to the noise.

IV. EXTREMAL-POINT DENSITIES ON THE CONTINUUM

Let us consider a continuous and at least two times
ferentiable functionf :@0,L#→R. We are interested in count

FIG. 4. Density of minima in the steady state for the larg
curvature model.
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ing the total number of extrema off in the@0,L# interval. The
topology of continuous curves in one dimension allows
three possibilities on the nature of a pointxi for which
f 8uxi

50, namely,xi is a local minimum if f 9uxi
.0, a local

maximum if f 9uxi
,0, and degenerate iff 9uxi

50. We call the

point xi a degenerate flat of orderk, if f ( j )uxi
50 for j

51,2, . . . ,k and f (k11)uxi
Þ0, k>2, assuming that the

higher-order derivativesf ( j ) implied exist. The counterlike
quantity

c~L,@ f # ![
1

LE0

L

dxu f 9ud~ f 8!, ~53!

whered is the Dirac delta, gives the number of extremu
points per unit length in the interval@0,L#, which in the limit
of L→0 is the extremum-point density off in the origin. For
our purposesL will always be a finite number; however, fo
the sake of briefness we shall refer toc simply as the density
of extrema. Note that counting the extrema of a functionf is
equivalent to counting the zeros of its derivatef 8. The diver-
gence ofc for finite L implies the existence of either com
pletely flat regions~infinitely degenerate!, or an ‘‘infinitely
wrinkled’’ region, such as for the truncated Weierstrass fu
tion shown in Fig. 2~in this latter case the divergence
understood by taking the limitM→`). As already explained
in the Introduction, this infinitely wrinkled region does no
necessarily imply that the curve is fractal, but if the curve
fractal, then regions of infinite wrinkledness must exist. T
divergence or nondivergence ofc can be used as an indicato
of the existence of such regions~completely flat or infinitely
wrinkled!.

One can make the following precise statement related
the counterc: if xi is an extremum point off of at most finite
degeneracyk, and if there exists a small enoughe, such that
f is analytic in the neighborhood@xi2e,xi1e#, and there are
no other extrema in this neighborhood, then

I ~xi ![E
xi2e

xi1e

dxu f 9ud~ f 8!51, 0,e!1, ~54!

In the following we give a proof of this statement.
Using Taylor-series expansions aroundxi , one writes

f 8~x!5
ak

k!
~x2xi !

k1
ak11

~k11!!
~x2xi !

k111•••, ~55!

f 9~x!5
ak

~k21!!
~x2xi !

k211
ak11

k!
~x2xi !

k1•••,

~56!

where we introduced the shorthand notationaj[ f ( j 11)uxi
.

For the nondegenerate case ofk51, Eq.~54! follows from a
classical property of thed function, namely,

d„g~x!…5(
i

ug8~xi !u21d~x2xi !,

xi are simple zeros of g. ~57!

r
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Let us now assume thatxi is degenerate of orderk (k>2).
Using the expansions~55! and ~56!, the variable changeu
5x2xi , and the well-known propertyd(ax)5uau21d(x),
we obtain

I ~xi !5kE
2e

e

duuuuk21U11(
j 51

`
~k21!!

~k211 j !!

ak1 j

ak
ujU

3dS uuukF11(
j 51

`
k!

~k1 j !!

ak1 j

ak
uj G D . ~58!

Next we split the integral~58! in two, *2e
e

•••5*2e
0

•••

1*0
e
••• , make the variable changeu→2u in the first one,

and thenz5uk in both integrals. The final expression ca
then be written in the form

I ~xi !5E
2ek

ek

dzuA~z!ud„zB~z!…, ~59!

where

A~z!511(
j 51

`
~k21!!

~k211 j !!

ak1 j

ak
zj uzu j /k2 j

and

B~z!511(
j 51

`
k!

~k1 j !!

ak1 j

ak
zj uzu j /k2 j . ~60!

We haveA(0)5B(0)51, and

@zB~z!#8511(
j 51

`
k!

~k1 j !!

ak1 j

ak
S j

k
11D zj uzu j /k2 j

⇒@zB~z!#8uz5051. ~61!

~Take the derivatives separately to the right and to the lef
z50.! Thus, sincez50 is asimplezero ofzB(z), property
~57! can be applied for sufficiently smalle:

I ~xi !5uA~0!u51, ~62!

proving our assertion. Note that, because of Eq.~54!, c
counts all the nondegenerate and the finitely degener
points as well, giving equal weight of unity to each. Can
count the nondegenerate extrema separately? The answ
affirmative, if one considers instead of Eq.~53! the following
quantity:

cq~L,@ f # ![
1

LE0

L

dxu f 9uq11d~ f 8!, q.0. ~63!

Performing the same steps as above we obtain for a de
erate point

I q~xi ![E
xi2e

xi1e

dxu f 9uq11d~ f 8!

5S uaku
~k21!! D

qE
2ek

ek

dzuzuq(121/k)uA~z!uq11d„zB~z!….

~64!
f

te

r is

n-

Sincek>2, q(121/k)> 1
2 q.0, i.e.,

I q~xi !50 for xi degenerate. ~65!

This means thatq.0 eliminates the degenerate points fro
the count. To nondegenerate points (k51) Eq.~63! gives the
weight of

I q~xi !5ua1uq5 zf 9uxi
zq for xi nondegenerate. ~66!

In other words,

cq~L,@ f # !5
1

L (
i

uK~xi !uq,

q.0, xi nondegenerate extrema off , ~67!

where K(x)5 f 9 is the curvature of f at x. The limit q

→01 in Eq. ~67! gives the extremum-point densityc̄(L,@ f #)
of f of nondegenerate extrema:

c̄~L,@ f # !5 lim
q→01

cq~L,@ f # !5 lim
q→01

1
LE0

L

dxu f 9uq11d~ f 8!.

~68!

It is important to note that taking theq→01 limit in Eq. ~67!
is not equivalentto takingq50 in Eq.~63!, i.e., the limit and
the integral on the right-hand side of Eq.~68! are not inter-
changeable. The difference is the set of degenerate poin

Until now, we did not make any distinction betwee
maxima and minima. In a natural way, we expect that
quantity

u~L,@ f # ![
1

LE0

L

dx f9d~ f 8!u~ f 9!, ~69!

whereu(x) is the Heaviside step function, will give the den
sity of minima ~due to the step function, here we can dr
the absolute values!. However, performing a similar deriva
tion to the one above, one concludes that Eq.~69! is some-
what ill defined, in the sense that the weight given to deg
erate points depends on the definition of the step functio
the origin @however,u(L,@ f #) is bounded#. Introducing aq
regulatoras above, the weight of degenerate points is pul
down to zero:

uq~L,@ f # ![
1

LE0

L

dx@ f 9#q11d~ f 8!u~ f 9!, q.0, ~70!

and

uq~L,@ f # !5
1

L (
i

@K~xi !#
q,

q.0, xi nondegenerate minima off . ~71!
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Note that in the equation above the absolute values are
needed, since we are summing over the curvatures o
local minima. The density ū(L,@ f #) of nondegenerate
minima of f is obtained after taking the limitq→01:

ū~L,@ f # !5 lim
q→01

uq~L,@ f # !, ~72!

and the limit is not interchangeable with the integral in E
~70!. To obtain densities for maxima, one only has to repla
the argumentf 9 of the Heaviside function with2 f 9.

A. Stochastic extremal-point densities

We are interested in exploring the previously introduc
quantities for a stochastic function subject to time evolut
h(x,t). This function may, for example, be the solution to
Langevin equation. We define the two basic quantities in
same way as before, except that now one performs a stoc
tic average over the noise, as well:

Cq~L,t !5K 1

LE0

L

dxU]2h

]x2 Uq11

dS ]h

]xD L
and

Uq~L,t !5K 1

LE0

L

dxF ]2h

]x2G q11

dS ]h

]xD uS ]2h

]x2D L . ~73!

For systems preserving translational invariance, the stoc
tic average of the integrand becomesx independent, and the
integrals can be dropped:

Cq~L,t !5K U ]2h

]x2 Uq11

dS ]h

]xD L , ~74!

Uq~L,t !5K S ]2h

]x2D q11

dS ]h

]xD uS ]2h

]x2D L . ~75!

According to Eqs.~67! and ~71!, Cq(L,t) and Uq(L,t) can
be thought of as time-dependent ‘‘partition functions’’ f
the nondegenerate extremal-point densities of the underl
stochastic process, withq playing the role of ‘‘inverse tem-
perature’’:

Cq~L,t !5K 1

L (
i

uK~xi !uqL ,

q.0, xi nondegenerateextrema, ~76!

Uq~L,t !5K 1

L (
i

@K~xi !#
qL ,

q.0, xi nondegenerateminima. ~77!

It is important to mention that in the above equations
averagê •••& and the summation arenot interchangeable
particular realizations ofh have particular sets of minima.

Two values forq are of special interest:q→01 and q
51. In the first case we obtain the stochastic average of
density of nondegenerate extrema and minima:
ot
all

.
e

d
n

e
as-

s-

g

e

e

C̄~L,t !5 lim
q→01

Cq~L,t ! and Ū~L,t !5 lim
q→01

Uq~L,t !,

~78!

and in the second case we obtain the stochastic averag
the mean curvature at extrema and minima:

K̄ext~L,t !5
C1~L,t !

C̄~L,t !
and K̄min~L,t !5

U1~L,t !

Ū~L,t !
~79!

~we need to normalize with the number of extrema
minima per unit length to get the curvature per extremum
minimum!.

In the following we explore the quantities~74!–~79! for a
large class of linear Langevin equations. To simplify the c
culations, we will assume thatq is a positive integer. Then
we will attempt analytic continuation on the final result as
function ofq. In the calculations we will make extensive us
of the standard integral representations of thed and step
functions:

d~y!5E
2`

` dz

2p
eizy5 (

n50

` E
2`

` dz

2p

~ iz!n

n!
yn, ~80!

u~y!5 lim
e→01

E
2`

`
dz
2p

eizy

e1 iz

5 lim
e→01 (

n50

` E
2`

`
dz
2p

1
e1 iz

~ iz!n

n!
yn. ~81!

If q is a positive odd integer, we may drop the absolute va
signs in Eq.~74!. In general, the absolute values make t
calculation of stochastic averages very difficult. We can
around this problem by employing the following identity:

uyun5yn$~21!n1u~y!@12~21!n#%. ~82!

This brings Eq.~74! to

Cq~L,t !5@12~21!q11#Uq~L,t !1~21!q11Bq~L,t !,
~83!

where

Bq~L,t !5K 1

LE0

L

dxS ]2h

]x2D q11

dS ]h

]xD L
5K S ]2h

]x2D q11

dS ]h

]xD L . ~84!

Obviously, forq an odd integer,Bq5Cq . For q even,Bq is
an interesting quantity by itself. In this case the weight of
extremumxi is sgn@K(xi)#uK(xi)uq. If the analytic continu-
ation can be performed, then theq→01 limit will tell us if
there are more nondegenerate maxima than minima~or oth-
erwise! on average. Using the integral representations~80!
and ~81! we find

Bq~L,t !5 (
n50

` E
2`

` dz

2p

~ iz!n

n! K S ]2h

]x2D q11S ]h

]xD nL ,

~85!
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Uq~L,t !5 lim
e→01

(
n150

`

(
n250

` E
2`

` dz1

2p

~ iz1!n1

n1!

3E
2`

` dz2

2p

~ iz2!n2

n2!
1

e1 iz2

3 K S ]2h
]x2D n21q11S ]h

]x
D n1L . ~86!

V. EXTREMAL-POINT DENSITIES OF LINEAR
STOCHASTIC EVOLUTION EQUATIONS

Next we calculate the densities~85! and ~86! for the fol-
lowing type of linear stochastic equations

]h

]t
52n~2¹2!z/2h1h~x,t !, n,D,z.0, xP@0,L#,

~87!

with initial conditionh(x,0)50, for all xP@0,L#. Here,h is
a white noise term drawn from a Gaussian distribution w
zero mean̂ h(x,t)&50, and covariance

^h~x,t !h~x8,t8!&52Dd~x2x8!d~ t2t8!. ~88!

We also performed our calculations with other noise typ
such as volume conserving and long-range correlated o
however, the details are to lengthy to be included in
present paper and will be the subject of a future publicati
As boundary condition we choose periodic boundaries:

h~x1nL,t !5h~x,t !, h~x1nL,t !5h~x,t ! for all nPZ.
~89!

The general solution to Eq.~87! is obtained simply with
the help of Fourier series@17#. The Fourier series and it
coefficients for a functionf defined on@0,L# is

f ~x!5(
k

f̃ ~k!eikx, f̃ ~k!5
1

LE2L

L

dx f~x!e2 ikx, ~90!

where k5(2p/L)n, n5 . . . ,22,21,0,1,2, . . . . The Fou-
rier coefficients of the general solution to Eq.~87! are

h̃~k,t !5E
0

t

dt8e2nukuz(t2t8)h̃~k,t8!. ~91!

The correlations of the noise in momentum space are

^h̃~k,t !h̃~k8,t8!&5
2D

L
dk,2k8d~ t2t8!. ~92!

Due to the Gaussian character of the noise, the two-p
correlation of the solution~91! is also d correlated, and it
completely characterizes the statistical properties of the
chastic dynamics~87!. It is given by

^h̃~k,t !h̃~k8,t8!&5S~k,t !dk,2k8 , ~93!

whereS(k,t) is the structure factor,

S~k,t !5
D

nLukuz
~12e22nukuzt!. ~94!
s,
s;

e
.

nt

o-

Equation~87! has been analyzed in great detail by a num
of authors~see Ref.@17# for a review!. It was shown that
there exists an upper critical dimensiondc5z for Eq. ~87!
which separates the rough regime withd,z from the non-
roughening regimed.z. In one dimension, the rough regim
corresponds to the conditionz.1, which we shall assume
from now on, since this is where the interesting physics li

Next, we evaluate the quantities~74!–~79! by directly cal-
culating the expressions in Eqs.~85! and~86!. This amounts
to computing averages of the type

QN,M5K S ]2h

]x2D NS ]h

]xD ML . ~95!

Expressingh with its Fourier series according to Eq.~90!, we
write

S ]h

]xD M

5 i M(
k1

•••(
kM

k1•••kMh̃~k1 ,t !•••h̃~kM ,t !

3ei (k11•••1kM)x, ~96!

S ]2h

]x2D N

5~21!N(
k18

•••(
kN8

k18
2
•••kN8

2h̃~k18 ,t !•••h̃~kN8 ,t !

3ei (k181•••1kN8 )x, ~97!

which then is inserted in Eq.~95!. Thus one needs to
calculate averages in Fourier space of the ty

^h̃(k1 ,t)•••h̃(kM ,t)h̃(k18 ,t) . . . h̃(kN8 ,t)&. According to Eq.

~93! h̃ is anti-d-correlated; therefore these averages can
performed in the standard way@33# by taking all the possible
pairings of indices and employing Eq.~93!. In our case there
are three types of pairings:$kj ,kl%, $kj ,kl8%, and $kj8 ,kl8%.
Let us pick a ‘‘mixed’’ pair$kj ,kl8% containing a primed and
a nonprimed index. The corresponding contribution inQN,M
will be

(
kj

(
kl8

kjkl8
2S~kl8 ,t !ei (kj 1kl8)xdkj ,2k

l8
. ~98!

Since the structure factorS(k,t) is an even function ink, Eq.
~98! becomes(kj

kj
3S(kj ,t)50, because the summand is a

odd function ofkj and the summation is symmetric aroun
zero. Thus, it is enough to consider nonmixed index pa
only. This means thatQN,M decouples into

QN,M5K S ]2h

]x2D NL K S ]h

]xD M L . ~99!

The averages are calculated easily, and we find

K S ]h

]xD M L 5H ~M21!!! @f2~L,t !#M /2 for M even

0 for M odd,
~100!

and
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K S ]2h

]x2D NL 5H ~N21!!! @f4~L,t !#N/2 for N even

0 for M odd,
~101!

where

fm~L,t ![(
k

ukumS~k,t !. ~102!

Employing Eqs.~100! and~101! in Eq. ~85!, it follows that if
q is an even integer,q52s, s51,2, . . . ,then

B2s~ t !50, s51,2, . . . , ~103!

whereas forq an odd integer,q52s21, s51,2, . . . ,

B2s21~ t !5C2s21~ t !5
2s21/2

p
GS s1

1

2D @f4~L,t !#s

Af2~L,t !
,

s51,2, . . . , ~104!

where we used the identity 2p(2p21)!!/(2p)! 51/p! and
performed the Gaussian integral.

The calculation ofUq is a bit trickier. The sum overn1 in

Eq. ~86! is easy and leads to the Gaussiane2f2(L,t)z1
2/2. How-

ever, the sum overn2 is more involved. Let us make th
temporary notation for the sum overn2:

Rq5 (
n250

`
~ iz2!n2

n2!
~2r 21!!! @f4~L,t !# r , n21q1152r .

~105!

We have to distinguish two cases according to the pa
of q.

~1! q is odd,q52s21, s51,2, . . . . Inthis caseRq be-
comes

R2s215(
r 5s

`
~ iz2!2(r 2s)

@2~r 2s!#!

~2r !!

r ! S 1

2
f4~L,t ! D r

5~z2!22s~21!sF ]2s

]x2s
~e2f4(L,t)z2

2x2/2!G
x51

.

~106!

The Hermite polynomials are defined via the Rodrigues f
mula as

Hn~x!5~21!nex2 dn

dxn
~e2x2

!. ~107!

Using this, we can expressR2s21 with the help of Hermite
polynomials:

R2s215~21!sS 1

2
f4~L,t ! D s

H2sSA1

2
f4~L,t !z2D

3e2f4(L,t)z2
2x2/2. ~108!

~2! q is even,q52s, s51,2, . . . . Thecalculations are
analogous to the odd case:
y

-

R2s5 (
r 5s11

`
~ iz2!2(r 2s)21

@2~r 2s!21#!

~2r !!

r ! S 1

2
f4~L,t ! D r

5~ iz2!22s21F ]2s11

]x2s11
~e2f4(L,t)z2

2x2/2!G
x51

~109!

or, via Hermite polynomials,

R2s5 i ~21!sS 1

2
f4~L,t ! D s11/2

H2s11SA1

2
f4~L,t !z2D

3e2f4(L,t)z2
2x2/2. ~110!

In order to obtainUq we have to do the integral overz2 in
Eq. ~86!. This can be obtained after using the formula

E
2`

`

dx~x6 ic !nHn~x!e2x2
52n212nAp

G„~n2n!/2…

G~2n!

3e6( ip/2)(n1n), c→01.

~111!

Finally, the densities for the minima read as

U2s~ t !5
2s21

p
G~s11!

@f4~L,t !#s11/2

Af2~L,t !
, ~112!

U2s21~ t !5
2s23/2

p
GS s1

1

2D @f4~L,t !#s

Af2~L,t !
. ~113!

Formulas~103!, ~104!, ~112!, and ~113! combined with Eq.
~83! can be condensed very simply, and we obtain the g
eral result as

Uq~L,t !5
2q /221

p
GS q

2
11D @f4~L,t !# (q11)/2

Af2~L,t !
, ~114!

Cq~L,t !52Uq~L,t !. ~115!

Equations~114! and ~115! together with Eq.~113! fully
solve the problem for the density of nondegenerate extre
Equation~115! is an expected result in one dimension, b
cause Eq.~87! preserves the up-down symmetry. The dens
of nondegenerate minima is

Ū~L,t !5 lim
q→01

Uq~L,t !5 1
2p

Af4~L,t !
f2~L,t !

, ~116!

and the stochastic average of the mean curvature at a m
mum point is

K̄~L,t !5
U1~L,t !

Ū~L,t !
5Ap

2
Af4~L,t !, ~117!

i.e., the average curvature at a minimum is proportiona
the square root of the fourth moment of the structure fac
In the following section we exploit the physical informatio
behind the above expressions for the stochastic process~87!.
At some parameter values, a few of, or all, the quantit
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above may diverge. In this case we introduce a microsco
lattice cutoff 0,a!1, and analyze the limita→01 in the
final formulas. This in fact corresponds to placing the wh
problem on a lattice with lattice constanta. It has been
shown in Ref.@17# that for the class of equations~87! there
are three important length scales that govern the statis
behavior of the interfaceh: the lattice constanta, the system
sizeL, and thedynamical correlation lengthj defined by

j~ t ![~2nt !1/z. ~118!

According to Eqs.~102! and ~94! the functionfm(L,t) be-
comes

fm~L,t !5
2D

nL (
n50

` S 2pn

L D m2z

~12e2(j2pn/L)z
!, m52,4.

~119!

Then50 term can be dropped from the sum above, beca
it is zero even form,z ~expand the exponential and the
taken50). However, the whole sum may diverge depend
on m and z. In order to handle all the cases, including t
divergent ones, we introduce the microscopic lattice cutofa,
0,a!1, and then analyze the limita→01 in the final ex-
pressions. Appropriately, Eq.~119! becomes

fm~L,t !5
2D

nL (
n51

L/2a S 2pn

L D m2z

~12e2(j2pn/L)z
!, m52,4.

~120!

A. Steady-state regime

Puttingj5` in Eq. ~120!, fm takes a simpler form:

fm~L,`!5
2D

nL S 2p

L D m2z

(
n51

L/2a

nm2z, m52,4.

~121!

As a→01, fm becomes proportional to the Riemann’sz
function, z(z2m). For z2m.1, fm is convergent, other-
wise it is divergent. In the divergent case we quote the
lowing results:

(
n51

N

ns5 ln N1C1O~1/N! if s521 ~122!

whereC is the Euler constant, and

(
n51

N

ns5
Ns11

s11
@11O~1/N!# if s.21, ~123!

which we will use to derive the leading behavior of the e
tremal point densities whenL/a→`. From Eqs. ~121!,
~114!, ~116!, and~117! it follows that

Uq~L,`!5GS q

2
11D S 2D

pn D q/2

~2p!(q/2)(52z)L212(q/2)(52z)

3F (
n51

L/2a

n42zG (q11)/2F (
n51

L/2a

n22zG21/2

, ~124!
ic

e

al

se

g

l-

-

Ū~L,`!5
1

L
A(

n51

L/2a

n42zS (
n51

L/2a

n22zD 21

, ~125!

and

K̄~L,`!5AD

2
~2p!52zLz25(

n51

L/2a

n42z. ~126!

The convergence~divergence! properties of the sums in Eqs
~124!–~126! for a→01 generate two critical values forz,
namely,z53 and z55. In the three regions separated b
these values we obtainqualitatively different behaviors for
the extremal-point densities.

~i! z.5. All quantities are convergent asa→01. We
have

Uq~L,`!5GS q

2
11D S 2D

pn D q/2

~2p!(q/2)(52z)

3
@z~z24!# (q11)/2

@z~z22!#1/2
L211(q/2)(z25), ~127!

Ū~L,`!5
1

L
Az~z24!

z~z22!
, ~128!

K̄~L,`!5~2p!(52z)/2AD

2n
z~z24!L (z25)/2. ~129!

Equation~128! shows that there is a finite number of minim
@Az(z24)/z(z22)# in the steady state, independently of th
system sizeL. @Ū(L,`) is the number of minima per uni
length, andLŪ(L,`) is the number of minima on the sub
strate of sizeL.# The mean curvatureK̄(L,`) diverges with
system size asL (z25)/2. This is consistent with the fact tha
the system size grows asL, the width grows asL (z21)/2, i.e.,
faster thanL, and thus the peaks and minima should beco
sleeker and sharper asL→`, expecting diverging curvature
at minima and maxima. However, this is not always tru
since the sleekness of the humps and mounds does not
essarily imply large curvatures at minima and maxima if t
shapesof the humps also change asL changes, i.e., if there is
lack of self-affinity. The existence ofz55 as a critical value
is a nontrivial result of the presented analysis.

~ii ! z55. According to Eq.~122!, f4(L,`) diverges loga-
rithmically asa→01. One obtains

Uq~`!.GS q

2
11D S 2D

np D q/2 1

Az~3!

1

L S ln
L

2a
1CD (q11)/2

,

~130!

Ū~L,`!5
1

Az~3!

1

L
Aln

L

2a
1C, ~131!

K̄~L,`!5AD

2n S ln
L

2a
1CD . ~132!
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Equation~131! shows that, although the density of minim
vanishes, the number of minima is no longer a constant
divergeslogarithmically with system sizeL. The mean cur-
vature still diverges, but logarithmically, when compared
the power-law divergence of Eq.~129!.

For the mean curvatureK̄(`) in Eq. ~126! z55 is the
only critical value, since it only depends onf4. For z,5,
using Eq.~123! we arrive at the result that the mean curv
ture at a minimum point approaches anL-independent con-
stant forL/a→`, with corrections on the order ofa/L:

K̄~L,`!.S p

a D (52z)/2A D

2n~52z!
, z,5. ~133!

We arrived at the same conclusion in Sec. II D when
studied the steady state of the discretized version of the
tinuum equation. Coincidentally, forz54 the two constant
values from Eqs.~133! and~47! are identical@a51 by defi-
nition in Eq. ~47!#.

~iii ! 3,z,5. In this casef4(L,`)→` and f2(L,`)
,` asa→01,

Uq~L,`!.GS q

2
11D S 2D

np D q/2S p

a D (q/2)(52z)S 1

2aD (52z)/2

3
L2(z23)/2

~52z!(q11)/2Az~z22!
, ~134!

and

Ū~L,`!.S 1

2aD (52z)/2 L2(z23)/2

A~52z!z~z22!
, ~135!

and the mean curvature is just given by Eq.~133!.
Comparing Eqs.~127!, ~130!, and~134! we can make an

interesting observation: while forz>5 the dependence o
the system sizeL is coupled to the ‘‘inverse temperature’’q,
for 3,z,5 the dependence onL decouplesfrom q, i.e., it
becomes independent of the inverse temperature. Equa
~135! shows that the density of minima vanishes with syst
size as a power law with an exponent (z23)/2, but thenum-
ber of minima diverges as a power law with an exponent
(52z)/2.

~iv! z53. In this casef4(L,`)→` and f2(L,`)→`
logarithmically asa→01. One obtains

Uq~L,`!.
1

2A2a
GS q

2
11D S pD

na2D q/2
1

Aln~L/2a!1C
,

~136!

and

Ū~L,`!.
1

2A2a

1

Aln~L/2a!1C
, ~137!

with a logarithmically vanishing density of minima, and th
dependence on the system size in Eq.~136! is not coupled
to q.

~v! 1,z,3. Now both f4 and f2 diverge asa→01.
Employing Eq.~123! yields
ut

-

e
n-

ion

f

Uq~L,`!.
1

2a
GS q

2
11D S 2D

pn D q/2S p

a D (q/2)(52z)

3
A32z

~52z!(q11)/2
~138!

and

Ū~L,`!.
1

2a
A32z

52z
. ~139!

Note that to leading order bothUq(L,`) and the density of
minima Ū(L,`) become system-size independent. T
system-size dependence comes in ascorrectionson the order
of a/L and higher. The fact that the efficiency of the ma
sively parallel algorithm presented in Sec. III B is not va
ishing is due precisely to the above phenomenon: the fl
tuations of the time horizon in the steady state belong to
z52 class~Edwards-Wilkinson universality!, and according
to the results under~iv! the density of minima~or the effi-
ciency of the parallel algorithm! converges to a nonzero con
stant, asL→`, ensuring the scalability of the algorithm. A
algorithm that would map into az>3 class would have a
vanishing efficiency with increasing number of process
elements. In particular, forz52, one obtains from Eq.~139!
Ū(L,`).(a2A3)2150.2886 . . . /a. Note that the utiliza-
tion we obtained is somewhat different from in the discre
case, which was approximately 1/4. This is due to the f
that this number is nonuniversal and it may show differen
depending on the discretization scheme used. Howeve
cannotbe zero.

Another important conclusion can be drawn from the fin
results listed above: at and belowz55, all the quantities
diverge when a→01, and L is fixed. This means that the
higher the resolution, the more details we find in the m
phology, just as for an infinitely wrinkled or fractal-like su
face. We call this transition acrossz55 a ‘‘wrinkle’’ transi-
tion. As shown in the Introduction, wrinkledness can assu
two phases depending on whether the curve is a fractal or
and the transition between these two phases may be
ceived as a phase transition. However, one may be abl
scale the system sizeL with a such that the quantities calcu
lated will not diverge in this limit. This is possible only in
the regime 3,z,5, when we impose

Lz23a(q11)(52z)5const. ~140!

This shows that the rescaling cannot be done for all inve
temperaturesq at the same time. In particular, for the dens
of minima andz54, La5const.

B. Scaling regime

The full temporal behavior of the extremal-point densiti
can be obtained after employing the Poisson summation
mulas ~B4! from Appendix B in Eq.~120!. Due to lack of
space, we will only present the results, leaving the prese
tion of the details of the derivation to a forthcoming pub
cation. It is important to note that the scaling properties
the dynamics are determined by the dimensionlessratios L/j
andj/a. The scaling regime is defined bya!j!L.
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Just as in the case of steady state, one has to disting
five situations depending on the values ofz, with respect to
the critical values 3 and 5.

~i! z.5. The time behavior is a clean power law:Uq(L,t)
decaysas ;t2[21q(z25)]/2z, Ū(L,t);t21/z, and K̄(L,t) di-
verges as;t (z25)/2z, for L/j@1.

~ii ! z55. In this case the leading temporal behavior ha
logarithmic component due to the borderline situatio
Uq(L,t) decaysas;t21/5(ln t)(q11)/2, Ū(L,t);t21/5(ln t)1/2,
and K̄(L,t) divergesas;(ln t)1/2.

~iii ! 3,z,5. Belowz55 the leading time dependence
the partition functionUq(L,t) becomesindependentof the
inverse temperatureq, and it presents a clean power-law d
cay ;t2(z23)/2z which is the same also forŪ(L,t). In par-
ticular, for z54 this means at21/8 decay, which is very well
satisfied by the larger curvature model from Sec. III C~see
Fig. 5!.

Our final expressions also show that the leading term
system-size independent. Indeed, this property is also in
good agreement with the numerics on the larger curva
model from Fig. 5, where the two data sets forL5100 and
L5120 practically coincide.

Since the mean curvature depends onf4 only, for all
cases belowz55 the dependence is given by the same f
mula ~one just needs to replace the corresponding va
for z).

~iv! z53. This is another borderline situation, and t
leading time dependences areUq(L,t);(ln t)21/2 and
Ū(L,t);(ln t)21/2.

~v! 1,z,3. In this case the partition function and th
density of minima all converge to a constant which to lea
ing order is independent of the system size. The densit
minima was shown in Sec. II to have this property in t
steady state. Here we saw not only that, but also thatall q
moments show the same behavior, and, even more, the
behavior before reaching the steady-state constant is n
clean power law, but rather a decaying correction in the
proach to this constant. The leading term in the tempo
correction is ;t2(32z)/z, and the next-to-leading term i
;t2(52z)/z.

VI. CONCLUSIONS AND OUTLOOK

In summary, based on the analytical results presente
short-wavelength analysis of interface fluctuations can p

FIG. 5. Density of minima for the larger curvature model as
function of time~the number of deposited layers!, for two system
sizes,L5100 ~diamonds! and L5120 ~crosses!. The straight line
corresponds to the behaviort21/8.
ish

a
:

is
ry
re

-
e

-
of

e
t a
-

al

, a
-

vide us with interesting information and give an alternati
description of surface morphologies. This analysis give
more detailed characterization and can be used to disting
interfaces that are ‘‘fuzzy’’ from those that locally appear
be smooth. The central quantities, the extremal-point de
ties, are numerically and analytically accessible. T
partition-function-like formalism enables us to access a w
range ofq moments of the local curvature distribution. In th
case of the stochastic evolution equations studied, we co
exactly relate theseq moments to the structure function o
the process via the simple quantitiesf2 and f4. The wide
spectrum of results accessed through this technique sh
the richness of short-wavelength physics. This physics
there, and the long-wavelength approach simply cannot
produce it, but instead may suggest an oversimplified pict
of reality. For example, the MPEU model has been shown
belong in the steady state to the EW universality class; h
ever, it cannot be described exactlyby the EW equation in
all respects, not even in the steady state. For example,
utilization ~or density of minima! of the MPEU model is
0.246 41, which for the EW model on a lattice is 0.25. Als
if one just simply looks at the steady-state configuration, o
observes highskewnessfor the MPEU model@2#, whereas
the EW model is completely up-down symmetric. This c
also be shown by comparing the calculated two-slope c
elators. For a number of models that belong to the K
universality class, this broken-symmetry property compa
to the EW case has recently received attention@2,35,36# and
has been extensively investigated by Neergard and den
@35#. The difference on the short-wavelength scale betw
two models that belong to the same universality class lie
the existence of irrelevant operators~in the renormalization
group sense!. Although these operators do not change u
versal properties, the quantities associated with them ma
of very practical interest. The parallel computing examp
shows that the fundamental question of algorithmic scala
ity is answered based on the fact that the simulated t
horizon in the steady state belongs to the EW universa
class, and thus it has afinite density of local minima. The
actual value of the density of local minima in the thermod
namic limit, however, strongly depends on the microsco
details, which in principle can be described in terms of irr
evant operators@35#.

The extremal-point densities introduced in the present
per may actually have a broader application than stocha
surface fluctuations. The main geometrical characteriza
of fractal curves is based on the construction of th
Haussdorff-Besikovich dimension, or the ‘‘box-counting
dimension: one covers the set with small boxes of linear s
e and then tracks the divergence of the number of bo
needed to cover in a minimal way the whole set ase is
lowered to zero. For example, a smooth line in the plane
a dimension of unity, but the Weierstrass curve of Eq.~2! has
a dimension of lnb/ln a ~for b.a). The actual length of a
fractal curve whose dimension is larger than unity diverg
when e→01. The total length at a given resolutione is a
global property of the fractal; it does not tell us about th
way it curves. The measure we propose in Eq.~3! is meant to
characterize the distribution of a local property of the cur
its bending, which in turn is a measure of the curve
wrinkledness. For simplicity we formulated it for function
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i.e., for curves that are single valued in a certain directi
This can be remedied and generalized by introducing a
rametrizationgP@0,1# of the curve, and then plotting th
local curvaturevs this parameterK(g). The plot will be a
single-valued function on which Eq.~3! is easily defined.

Other desirable extensions of the present technique ar~1!
to include a statistical description of the degeneracies
higher order and~2! to repeat the analysis for higher~such as
d52) substrate dimensions. The latter promises an e
richer spectrum of results, since in higher dimensions ther
a plethora of singular points (“ f 50) which are classified by
the eigenvalues of the Hessian matrix of the function at
singular point. Deciphering the statistical behavior of the
various singularities for randomly evolving surfaces is
interesting challenge. The studies performed by Kondev
Henley @37# on the distribution of contours on rando
Gaussian surfaces should be a good aid in achieving
goal. In particular, we may find the method developed h
useful in studying the spin-glass ground state, and the s
glass transition problem.~3! Another set of interesting exten
sions would be to analyze the effect of nonlinearities on
extremal-point densities. It is conceivable that in cert
cases linear stochastic equations of type~87! will describe
well only the long-wavelength limit, and the full descriptio
would in fact imply the existence of irrelevant nonline
terms in the model. These nonlinearities are thus not aff
ing the universality class of the model but they perhaps
affect the critical valuezc at which the phase transition be
tween the fuzzy and smooth behavior sets in. Last but
least, we invite the reader to consider, instead of the Lan
vin equations studied here, noisy wave equations, with a
ond derivative of the time component, or other stocha
evolution equations.
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APPENDIX A: ŠQ„Àx1…Q„x2…‹ FOR GENERAL COUPLED
GAUSSIAN VARIABLES

The expression we derive in this Appendix, despite
simplicity, is probably the most important one concerni
the extremal-point densities of one-dimensional Gaussian
terfaces on a lattice. If the correlation matrix for two possib
coupled Gaussian variables is given by

^x1
2&5^x1

2&5d.0,

^x1x2&5c, ~A1!

then the distribution follows as
.
a-

f

n
is

e
e

d
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e
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e
n
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n

ot
e-
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n-

P~x1 ,x2!5
1

2pAD expS 2
1

2D ~dx1
21dx2

222cx1x2! D
5

1

2pAD expF2
d

2D S x1
21x2

222
c

d
x1x2D G ,

~A2!

where D[d22c2.0. We aim to find the average of th
stochastic variableu5Q(2x1)Q(x2):

^u&5^Q~2x1!Q~x2!&5E
2`

` E
2`

`

dx1dx2

3Q~2x1!Q~x2!P~x1 ,x2!, ~A3!

which is simply the total weight of the densityP(x1 ,x2) in
the x1,0, x2.0 quadrant. Ifc50, the density is isotropic
and ^u&51/4. In the general case it is convenient to find
new set of basis vectors where the probability density is i
tropic ~of course the shape of the original quadrant will tran
form accordingly!. Introducing the linear transformation

x15AD
2 S y1

Ad1c
1

y2

Ad2c
D ,

x25AD
2 S 2

y1

Ad1c
1

y2

Ad2c
D , ~A4!

and exploiting the fact thatQ(lx)5Q(x) for l.0, we have

^u&5E
2`

` E
2`

`

dy1dy2QS 2
y1

Ad1c
2

y2

Ad2c
D QS 2

y1

Ad1c

1
y2

Ad2c
D 1

2p
expS 2

1

2
~y1

21y2
2! D . ~A5!

Now the probability density for the new variablesy1 ,y2 is
isotropic, and̂ u&5u/(2p), whereu is the angle enclosed
by the two unit vectors

v15
1

A2d
S 2Ad1c

Ad2c
D , v25

1

A2d
S 2Ad1c

2Ad2c
D . ~A6!

From their dot product one obtains

cos~u!5
v1•v2

uv1uuv2u
5

c

d
, ~A7!

and, thus, for̂ u&,

^u&5
1

2p
arccosS c

dD . ~A8!

APPENDIX B: POISSON SUMMATION FORMULAS

In this Appendix we recall the well-known Poisson sum
mation formula and adapt it for functions with finite suppo
in R. In the theory of generalized functions@38# the follow-
ing identity is proven:
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(
m52`

`

d~x2m!5 (
m52`

`

e2p imx. ~B1!

Let f :@a,b#→R be a continuous function with continuou
derivative on the interval@a,b#. Multiply Eq. ~B1! on both
sides byf (x) and then integrate both sides froma to b. In
the evaluation of the left-hand side we have to pay atten
to whether either or both the numbersa andb are integers or
nonintegers. In the integer case the contribution of the
point is calculated via the identity

E
n

n1r

dx d~x2n! f ~x!5
1

2
f ~n!, ;r .0. ~B2!

Assuming thatf is absolutely integrable ifb5`, and choos-
ing a50, the classical Poisson summation formula is o
tained:

(
n50

`

f ~n!5
1

2
f ~0!1E

0

`

dx f~x!

12 (
m51

` E
0

`

dx f~x!cos~2pmx!. ~B3!

Let us also write out explicitly the case when botha andb
are integers:

(
n5a

b

f ~n!5
1

2
@ f ~a!1 f ~b!#1E

a

b

dx f~x!

12 (
m51

` E
a

b

dx f~x!cos~2pmx! when a,bPZ.

~B4!

Next we apply these equations to give an exact closed
pression for the slope correlation function forfinite L @Eq.
~18!#:

CL
f~ l !5

D

L (
n51

L21
ei (2pn/L) l

n12k@12cos~2pn/L !#
, ~B5!

wherel P$0,1,2, . . . ,L21%, andn,kPR1. Let us denote

a5
2k

n12k
. ~B6!

We haveuau,1, and

CL
f~ l !5

Da

2kL (
n51

L21
ei (2pn/L) l

12a cos~2pn/L !
. ~B7!

In order to apply the Poisson summation formula~B4!, we
introduce the function

f ~x!5
a

2kL (
n51

L21
ei (2px/L) l

12a cos~2px/L !
, 1<x<L21,

~B8!

and identify in Eq. ~B4! a[1 and b[L21. The non-
integral terms of Eq.~B4! give
n

d

-

x-

1

2
@ f ~1!1 f ~L21!#5

a

2kL

cos@~2p/L !l #

12a cos@~2p/L !l #
. ~B9!

The next term becomes

E
1

L21

dx f~x!5
a

2kA12a2 S 12A12a2

a D l

2
a

2pkE0

2p/L

dx
cosxl

12a cosx
, ~B10!

where during the evaluation of the integral we made a sim
change of variables and used a well-known integral fr
random-walk theory@10,34#:

E
2p

p

dx
eixl

12a cosx
5

2p

A12a2 S 12A12a2

a D l

, l>0.

~B11!

The sum over the integrals in Eq.~B4! can also be evaluated
and one obtains

2(
n51

` E
1

L21

dx f~x!cos~2pnx!

5
a~bl1b2 l !

2kA12a2

bL

12bL

2
a

2pk (
n51

` E
22p/L

2p/L

dx cos~nLx!
eilx

12a cosx
,

~B12!

where

b5
12A12a2

a
and ubu,1. ~B13!

To compute the sum on the right-hand side of Eq.~B12!, we
recall another identity from the theory of generalized fun
tions ~see Ref.@38#, p. 155!:

(
n51

`

einx5p (
m52`

`

d~x22mp!1
i

2
cotS x

2D2
1

2
.

~B14!

Combining Eq.~B14! and identity~B1!, one obtains:

(
n51

`

cos~nx!5p (
m52`

`

d~x22mp!1
1

2
. ~B15!

Performing the sum overn directly on the right-hand side o
Eq. ~B12! via Eq. ~B15!, yields
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2
a

2pk (
n51

` E
22p/L

2p/L

dx
cos~nLx!eilx

12a cosx

52
a

2kL (
m52`

` E
22p

2p

dy
eilyd~y22mp!

12a cosy

1
a

2pkE0

2p/L

dx
coslx

12a cosx
. ~B16!

Only m561,0 contribute in Eq.~B16!. With the help
of Eq. ~B2!:
,

E.
s-

t.

ch

a

ol

-

,

2
a

2pk (
n51

` E
22p/L

2p/L

dx
cos~nLx!eilx

12a cosx

52
a

2kL S 1

12a
1

cos@~2p/L !l #

12a cos~2p/L ! D
1

a

2pkE0

2p/L

dx
coslx

12a cosx
. ~B17!

Using Eq.~B17! in Eq. ~B12!, we can add the result to th
rest of the contributions~B9! and ~B10! to obtain the final
expression@Eq. ~19!# after cancellations.
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